Executive Summary of Team Structure and Experience

Red River Partners

<table>
<thead>
<tr>
<th>TEAM MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consortium:</td>
</tr>
<tr>
<td>Guarantors:</td>
</tr>
<tr>
<td>Equity Members:</td>
</tr>
<tr>
<td>Lead Contractors:</td>
</tr>
<tr>
<td>Lead Engineer:</td>
</tr>
<tr>
<td>Subcontractors:</td>
</tr>
</tbody>
</table>

[See Exhibit A: chart illustrating the legal structure of Red River Partners]

<table>
<thead>
<tr>
<th>KEY PERSONNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal in Charge:</td>
</tr>
<tr>
<td>Years of experience:</td>
</tr>
<tr>
<td>Relevant experience:</td>
</tr>
<tr>
<td>Prior projects:</td>
</tr>
<tr>
<td>Lead Negotiator:</td>
</tr>
<tr>
<td>Years of experience:</td>
</tr>
<tr>
<td>Relevant experience:</td>
</tr>
</tbody>
</table>
to rights and responsibilities under the project agreement, which then provides the framework for the drop-down of key responsibilities, e.g., design, construction, operations, etc., among the consortium members. In this role, she manages the consortium legal counsel and directly liaises with the consortium financing team and lenders counsel to ensure the commercial arrangements are acceptable to the lenders, their counsel, and rating agencies, if appropriate.

| Prior projects: | Regina Bypass P3 – Regina, Saskatchewan | Pennsylvania Rapid Bridge Replacement – Pennsylvania | Portsmouth Bypass – Portsmouth, Ohio |

TECHNICAL EXPERIENCE

| Exhibit B: Technical Experience – Design and Engineering |
| Exhibit C: Technical Experience – Construction |

Note: Pursuant to the Request for Qualifications (“RFQ”), each Team was limited to the number of examples of prior technical experience they could provide: two (2) up to ten (10) for Design and Engineering and two (2) up to ten (10) for Construction. See pages 77 and 78 of the RFQ. While each company likely has many more relevant prior experiences, the drafters of the RFQ felt it was important to limit the amount of prior experiences provided to encourage each Team to focus on the most relevant prior projects.
Full Name	Legal Role Description
Parsons Construction Group Inc. | Red River Constructors will be an integrated company formed by the Lead Contractor Members and the Lead Engineer. Graham will be the managing partner of Red River Constructors. Red River Constructors will be responsible for all design and construction aspects of the Projects, as will be dropped down under the Construction Contract. This contract will also provide for a robust performance security package on a joint and several basis for the benefit of the Developer and lenders. Red River Constructors will enter into design and construction subcontracts with the Subcontractors listed below.
Alberici Constructors, Inc. | Parsons Transportation Group

OMR Provider (Red River Partners)

Developer (Graham, Parsons, BBGI and Alberici’s through their management thereof) | Red River Partners will have primary responsibility for the OMR scope that will be delivered through a combination of self-perform and subcontractor management. This approach will be developed collaboratively with our identified Subcontractors to achieve the most cost-efficient solution while ensuring full compliance with the Project Agreement requirements. Any Subcontractor selected will enter into a subcontracts with Red River Partners and, as appropriate, an Interface Agreement with Red River Constructors.

Subcontractors

<table>
<thead>
<tr>
<th>Subcontractors</th>
<th>Entered into an agreement with Red River Constructors for the hydraulic analysis in the RFP phase and will enter into a detailed contract with Red River Constructors for the detailed design.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayers Associates</td>
<td>Shannon & Wilson, Inc.</td>
</tr>
<tr>
<td>Northern Technologies, LLC</td>
<td>R.J. Zavoral & Sons, Inc.</td>
</tr>
<tr>
<td>R.J. Zavoral & Sons, Inc.</td>
<td>Strata Corporation</td>
</tr>
<tr>
<td>Gladen Construction, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

Exhibit 2.1-2: Legal Structure Chart

Exhibit 2.1-2: Legal Structure Chart
Project Description

The New I-44 Design-Build

St. Louis, Missouri

The project reconstructed 10 miles of Interstate 44, widened and reconstructed the entire roadway; rebuilt 38 bridges; improved 11 interchanges; and constructed extensive retaining and sound walls, which required design and construction coordination with adjacent communities and property owners. A major project feature was the reconstruction of the I-64/I-170 interchange to a high-speed, fully directional facility. Similar to the Project, this project required an innovative approach to earthworks and maintenance of traffic, and provided recreational facilities such as bike and pedestrian paths.

<table>
<thead>
<tr>
<th>Initial Project Cost:</th>
<th>Final Project Cost:</th>
<th>Construction Start Date</th>
<th>Scheduled Completion Date</th>
<th>Actual Completion Date:</th>
<th>Percentage of Design Work:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$420,000,000</td>
<td>$420,000,000</td>
<td>1/2007</td>
<td>12/2009</td>
<td>12/2009</td>
<td>45%</td>
</tr>
</tbody>
</table>

Parsons

Missouri Department of Transportation

[0x0] (314) 453-0850

The design provided an innovative 545-foot, freestanding, tie-arch bridge that was erected on barges and lifted 70 feet into place using strand jacks. The approaches to the bridge include a five-span, full-depth, cast-in-place post-tensioned slab structure to the south, and a five-span, precast, concrete beam and deck structure to the north for an overall 11-span, 1,093-foot-long foundation. Span widths spread footings on rock for the south approach and driven-pipe piles for the river span and north approach. Similar to the Project, this project was constructed in cold weather, included hydraulic analysis, and constructed two bridges over active railroads.

<table>
<thead>
<tr>
<th>Initial Project Cost:</th>
<th>Final Project Cost:</th>
<th>Construction Start Date</th>
<th>Scheduled Completion Date</th>
<th>Actual Completion Date:</th>
<th>Percentage of Design Work:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$120,000,000</td>
<td>$130,000,000</td>
<td>6/2010</td>
<td>12/2013</td>
<td>12/2013</td>
<td>66%</td>
</tr>
</tbody>
</table>

Client Organization and Contact Name, Email and Phone Number

Client: Mike Yavarow

Email: myavarow@sfpwmd.gov

Phone: (701) 746-2640

Purpose: Flood Redu...
<table>
<thead>
<tr>
<th>Major Participants</th>
<th>Client Organization and Contact Name, Email and Phone Number</th>
<th>Project Name and Location</th>
<th>Project Description</th>
<th>Initial Project Cost</th>
<th>Final Project Cost</th>
<th>Construction Start Date</th>
<th>Scheduled and Actual Completion Dates</th>
<th>Project Type</th>
<th>Level Major Participants</th>
<th>Percentage of Work</th>
<th>Role of the Major Participants on the Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shannon & Wilson</td>
<td>City of Grand Forks, Mike Yavaron, myavaron@grandforkgov.com (701) 746-2640</td>
<td>Raw Water Intake and Transmission Lines Project City of Grand Forks, North Dakota</td>
<td>Shannon & Wilson assisted in the design of a critical raw water intake project to obtain raw water from both the nearby Red and the Red Lake Rivers to provide redundancy and for blending purposes. The new pump station was constructed behind the USACE levee system. To provide the required gravity flow, the pump station was located about 70 feet below the ground surface and four 36-inch-diameter pipelines were installed from the base of this pump station to the river sources. The depth of the pump station and the size of the lines precluded conventional trenching, and instead required horizontal boring for the pipes. The pump station was installed using a sinking caisson procedure in the weak Red River Valley soils. Shannon & Wilson’s Greg Fletcher (Geotechnical Design Lead) was the geotechnical engineer of record on this project and his work is unique to the area and gives him greater insight into the behavior of these soils to evaluate settlement and bearing capacity of foundations and subgrades for pavement and utilities. This information will provide the Authority with more reliable designs without the added conservatism that results from the lack of quality data.</td>
<td>$20,000,000</td>
<td>$20,000,000</td>
<td>2004</td>
<td>Scheduled Completion: 2005 Actual Completion: 2005</td>
<td>D-B-B</td>
<td>100% of the geotechnical studies.</td>
<td>$161,000</td>
<td>Subcontractor provided geotechnical recommendations for the design and construction of the caisson and over 2,000 feet of horizontally drilled (HDD) transmission lines. Also provided special inspection during construction.</td>
</tr>
<tr>
<td>Northern Technologies, LLC</td>
<td>Utheig Engineers Kris Carlson, P.E. kriscarlson@utheig.com (218) 846-7728</td>
<td>Oakport Township Flood Control Clay County, Minnesota</td>
<td>NTI provided exploration services, geotechnical consulting, and construction material testing for the multi-phase flood control levee protecting Oakport Township, Cass County, Minnesota. NTI consulting services included assessing stability of current embankments with and without proposed levee construction. Such findings provided basis for determination of compliance of levee construction to USCOE design protocol. Results from preliminary review supported opinion that the purchase of select residential properties and movement of levees further from the Red River of the North was preferable and cost effective. Subsequent to the geotechnical study, NTI provided oversight and material testing services of site corrective earthwork and construction of earthen levees. Similar to the Project, geotechnical exploration, the determination of stability, and siting of site features are relevant to earthen embankments and bridge abutments of the Project. NTI will complete similar construction testing services for quality control related evaluation of earthen fill placement on the Project.</td>
<td>$1,400,000 (est.)</td>
<td>$2,150,000* *Consultant Fee</td>
<td>2009</td>
<td>Scheduled Completion: 2009 and Ongoing Actual Completion: 2009 and ongoing (anticipated 2016 completion)</td>
<td>D-B-B</td>
<td>32%</td>
<td>Fee: $685,000</td>
<td>Geotechnical Engineer of Record responsible for design and engineering review of the levee/embankment stability of winter shutdown; design and engineering corrective measures plan for the spring startup of levee construction; compilation reports; rip rap grading; impervious fill acceptance testing; grading; plastic testing of concrete; compressive strength testing of concrete; masonry testing; and bituminous mixtures.</td>
</tr>
<tr>
<td>Northern Technologies, LLC</td>
<td>City of Fargo, Houston Engineering – Owner’s Representative Jerry D. Bents, P.E. jbens@houstonengineering.com (701) 237-5065</td>
<td>Fargo South Side Flood Control Study, Wild Rice River Fargo, North Dakota</td>
<td>As feasibility study, the City of Fargo requested hydrological and geotechnical stability evaluation of conceptual flood levee construction along natural embankments of the Red River of the North. The proposed project would develop alternatives for flood mitigation for the local neighborhood and adjacent south areas of Fargo. Such alternatives include construction of permanent levee along University Drive South to prevent overland flooding of enrich north of protective barrier. This will require construction within existing lots, channel cuts along the Red River, excavation of diversion channel for the Wild Rice River, construction of closure structures / levee, construction of embankments, and necessitating either permanent easements or outright purchase of property. Similar to the Project, the geotechnical exploration, assessment of soil properties, and analysis of embankment stability are the same services NTI will provide to assess embankments, bridge abutments, and related features of the Project.</td>
<td>Provided design only</td>
<td>Task orders total $500,000 to $2,000,000 per year</td>
<td></td>
<td></td>
<td>D-B-B</td>
<td>80%</td>
<td>Fee: $193,000</td>
<td>Subcontractor responsible for geotechnical exploration of subsurface conditions, evaluation of soil physical and strength parameters, and assessment of stability of the proposed levee alignment.</td>
</tr>
<tr>
<td>Ayres Associates</td>
<td>U.S. Army Corps of Engineers, Sacramento District Markus Boedeker Markus.S.Boedeker@usace.army.mil (916) 557-6637</td>
<td>Sacramento District USACE Flood Control Sacramento, California</td>
<td>Ayres performed numerous task orders for the USACE Sacramento District, under an IDIQ master contract. The task orders focused on flood control capacity of the Sacramento and American Rivers, with Ayres providing both hydraulic analysis and design of various proposed projects throughout the Sacramento Valley flood control system. The design flows on the Sacramento river projects ranged from 52,000 cfs to 152,000 cfs, depending on the purpose of the project (e.g. bank stability vs. flood control). Similar to the Project, this project involved the design and construction of a large-scale flood control project and levee work. This experience has prepared our team to take on the flood control aspects of the Project.</td>
<td>Provided design only</td>
<td>Task orders total $500,000 to $2,000,000 per year</td>
<td></td>
<td></td>
<td>D-B-B</td>
<td>32%</td>
<td>Fee: $161,000</td>
<td>Subcontractor responsible for project management, geohazards, quality control, site surveys, alternatives and final design, construction support.</td>
</tr>
<tr>
<td>Ayres Associates</td>
<td>Federal Highway Administration/National Highway Institute Scott Hogan Scott.hogan@dot.gov (720) 963-3742</td>
<td>FHWA/NHI Hydraulics Manuals and Training Courses Nationwide</td>
<td>Ayres personnel have taught national training courses and writing or updating national hydraulics guidance documents for the FHWA since 1990. The current versions of six major FHWA guidance manuals were written or co-authored by Ayres staff from the Fort Collins, Colorado office. Ayres experts are currently instructors for eight National Highway Institute hydraulics courses. The relevance of this work to the Project is the depth and breadth of subject matter expertise it requires, and enhances, in the areas of hydraulic analysis, stream stability, scour, sediment transport, and scour countermeasure design.</td>
<td>Task orders under the current IDIQ currently total about $500,000 to $750,000</td>
<td>No construction associated with project</td>
<td></td>
<td></td>
<td>D-B-B</td>
<td>80%</td>
<td>No construction associated with project</td>
<td>Contractor responsible for training course development and delivery and draft through final production of manuals.</td>
</tr>
</tbody>
</table>
EXHIBIT C

FORM F2: TECHNICAL EXPERIENCE – CONSTRUCTION

<table>
<thead>
<tr>
<th>Major Participants</th>
<th>Client Organization and Contact Name, Email and Phone Number</th>
<th>Project Name and Location</th>
<th>Project Description</th>
<th>Initial and Final Project Cost</th>
<th>Construction Start Date</th>
<th>Scheduled and Actual Completion Dates</th>
<th>Project Type (D-B-B, DB, DBF, DBFM, D-B)</th>
<th>Major Participations</th>
<th>Role of Major Participants on the Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberici</td>
<td>U.S. Army Corps of Engineers Pierre Hingle Pierre.M.Hingle@usace.army.mil (504) 862-2738</td>
<td>Seabrook Flood Gate Complex New Orleans, Louisiana</td>
<td>Construction of new levee wall system and vertical lift gates and sector gates within the Inner Harbor Navigational Canal as part of a USACE New Orleans District, Hurricane Protection Office contract to provide 100-year level perimeter protection for the City of New Orleans. Similar to the Project, Seabrook featured design and construction of an open-channel conveyance system to mitigate future flood events, received FEMA accreditation, and includes rail structure construction.</td>
<td>Initial Project Cost: $181,450,000 Final Project Cost: $164,511,456</td>
<td>02/2010</td>
<td>Completed under budget</td>
<td>CMGC (EFT)</td>
<td>100%</td>
<td>Lead Contractor (Construction Manager/General Contractor) during design and construction phases. Alberici provided extensive value engineering services and self-performed 70% of construction.</td>
</tr>
<tr>
<td>Alberici</td>
<td>U.S. Army Corps of Engineers Alan Hunter Alan.F.Hunter@usace.army.mil (504) 862-2910</td>
<td>East Back Levee Reconstruction LPV-111 New Orleans, Louisiana</td>
<td>Reinforcement and raising of a 1.2-mile stretch of the New Orleans East Back Levee, Reach LPV-111, to a height capable of handling severe floods expected to occur once every 100 years using deep soil mixing process. Similar to the Project, LPV-111 featured extensive heavy civil earthwork, requiring movement of 4 million cubic yards of soil (1.7 of which was clay embankment) under an aggressive 24-month schedule to mitigate future flood events. The project also received FEMA accreditation.</td>
<td>Initial Project Cost: $411,600,000 Final Project Cost: $342,275,251</td>
<td>07/2009</td>
<td>Completed under budget</td>
<td>CMGC (EFT)</td>
<td>45%</td>
<td>Lead Contractor (Construction Manager/General Contractor) during design and construction phases. Alberici self-performed 45% of construction.</td>
</tr>
<tr>
<td>Alberici/Parsons</td>
<td>City of Atlanta Jeff Acton jeffrey.acton@jacobs.com (404) 427-6272</td>
<td>Custer Avenue Combine Sewer Overflow Tunnel Atlanta, Georgia</td>
<td>Construction of a new 10 million-gallon, underground linear storage facility and 34 million-gallon Intrenchment Creek CSO storage tunnel. The project featured excavation of more than 900 tons of solid rock during excavation of shafts and tunnels, which increased total overflow storage capacity to 44 million gallons-per-day. Similar to the Project, Custer Ave. CSO Tunnel featured extensive earthwork and construction of an open channel outfall canal and construction of aqueducts.</td>
<td>Initial Project Cost: $36,036,817 Final Project Cost: $38,589,608</td>
<td>03/2005</td>
<td>Completed early</td>
<td>D-B-B w/ post-award design-assist services</td>
<td>100%</td>
<td>Lead Contractor responsible for all aspects of construction. Parsons provided post-award preconstruction services.</td>
</tr>
<tr>
<td>Alberici</td>
<td>City of Fargo Troy Hall water@cityoffargo.com (701) 476-6741</td>
<td>Membrane Water Treatment Plant Expansion Fargo, North Dakota</td>
<td>15 MGD expansion and state-of-the-art upgrades to operational WTP, featuring installation of advanced membrane and reverse osmosis (RO) technologies, as well as modifications to the plant’s chemical feed and storage systems. Alberici is also managing owner-procured mechanical and electrical subcontracts. Similar to the Project, Fargo WTP expansion features extensive geotechnical engineering and construction in the Red River Valley.</td>
<td>Initial Project Cost: $104,000,000</td>
<td>05/2015</td>
<td>Scheduled Completion: 10/2018 On schedule</td>
<td>D-B-B</td>
<td>100%</td>
<td>Lead Contractor responsible for all aspects of construction, including construction management for owner-procured mechanical and electrical contracts.</td>
</tr>
<tr>
<td>Graham/Parsons</td>
<td>Government of Saskatchewan Ministry of Highways and Infrastructure David Stearns David.Stearns@gov.sk.ca (306) 787-2295</td>
<td>Regina Bypass P3 Regina, Saskatchewan</td>
<td>The majority of the project consists of 24.85 miles of new 4-lane highway, 10 new interchanges, 3 new intersections; 3 new overpasses; and, new service roads as required to facilitate local access. The project also includes highway upgrades and improvements, including widening the existing 4-lane section and the new phase of the bypass. Similar to the Project, this project requires extensive heavy earth moving operations, as well as structures construction, in cold weather.</td>
<td>Initial Project Cost: CAD 1,200,000,000 USD 914,933,000</td>
<td>06/2015</td>
<td>Completed under budget</td>
<td>DBFM</td>
<td>62.5%</td>
<td>Lead Contractor Members responsible for 62.5% of construction. Parsons is also Lead Designer. Wholly integrated joint venture, similar to that being proposed on this Project.</td>
</tr>
<tr>
<td>Graham/Parsons</td>
<td>Alberta Transportation Bill Van der Meer bill.vandermeer@gov.ab.ca (403) 422-3918</td>
<td>Northwest Anthony Henday Drive Edmonton, Alberta</td>
<td>New greenfield freeway segment of the Edmonton ring road. It involved construction of 13 miles of new divided highway with interchanges, flyovers, rail crossings and bridge structures. Similar to the Project, this major earthworks project was constructed in cold weather, included multiple transportation bridge and two rail bridges, as well as mitigation of geotechnical issues, utility relocations, storm water management, and environmental mitigation measures.</td>
<td>Initial Project Cost: $422,800,000 Final Project Cost: $422,800,000</td>
<td>07/2008</td>
<td>Completed under budget</td>
<td>DBFM</td>
<td>Graham and Parsons percentage of ownership in the JV was 35%</td>
<td>Lead Contractor Members Graham and Parsons were responsible for 35% of construction.</td>
</tr>
</tbody>
</table>
Participants and Roles

Graham/Parsons

Project: Northeast Stoney Trail

- **Location:** Calgary, Alberta
- **Description:** New greenfield freeway segment with interchanges, bridges, and railway crossings on Calgary’s ring road, accommodating 50,000 to 40,000 vehicles per day. Similar to the Project, this major transportation project was constructed in an extreme winter climate, included multiple transportation bridges and four rail crossings, mitigation of geotechnical issues, utility relocations, and storm water management.

- **Initial Project Cost:** $410,000,000
- **Final Project Cost:** $410,000,000
- **Completion Date:** 02/2007

Client Organization and Contact Information:
- **City of Calgary:** Zane Hartman, (403) 268-5941, zane.hartman@calgary.ca
- **Transportation:** Zane Hartman, (403) 268-5941, zane.hartman@calgary.ca

Role: Lead Contractor and Managing JV

Reason for Difference:
- **Initial Project Cost:** $1,200,000,000
- **Final Project Cost:** $1,200,000,000
- **Reason for Difference:** Owner directed changes

Initial and Final Project Cost Difference: $352,000,000

Project Information:
- **Start Date:** 06/2010
- **Actual Completion:** 12/2010

Project Type: DBFO&M

Major Participations: Graham and Parsons

Reason for Difference:
- **Initial Project Cost:** $176,000,000
- **Final Project Cost:** $176,000,000
- **Reason for Difference:** Two-month extension from owner for scope increase and changes.

Initial and Final Project Cost Difference: $53,896,517

Project Information:
- **Start Date:** 02/2010
- **Actual Completion:** 10/2012

Project Type: CM

Major Participations: Graham and Parsons

Reason for Difference:
- **Initial Project Cost:** $410,000,000
- **Final Project Cost:** $410,000,000
- **Reason for Difference:** Owner directed changes

Initial and Final Project Cost Difference: $352,000,000

Project Information:
- **Start Date:** 06/2010
- **Actual Completion:** 12/2010

Project Type: DB

Major Participations: Graham and Parsons

Reason for Difference:
- **Initial Project Cost:** $143,500,000
- **Final Project Cost:** $143,500,000
- **Reason for Difference:** Ownership in the JV was 35%.

Initial and Final Project Cost Difference: $50,000,000

Project Information:
- **Start Date:** 02/2007
- **Actual Completion:** 10/2009

Project Type: DB

Major Participations: Graham and Parsons

Reason for Difference:
- **Initial Project Cost:** $11,500,000
- **Final Project Cost:** $11,500,000
- **Reason for Difference:** No scope increase.

Initial and Final Project Cost Difference: $0

Project Information:
- **Start Date:** 02/2010
- **Actual Completion:** 10/2012

Project Type: CM

Major Participations: Graham and Parsons

Reason for Difference:
- **Initial Project Cost:** $850,000,000
- **Final Project Cost:** $850,000,000
- **Reason for Difference:** No scope increase.

Initial and Final Project Cost Difference: $0

Project Information:
- **Start Date:** 06/2015
- **Actual Completion:** 12/2015

Project Type: DB

Major Participations: Graham and Parsons

Reason for Difference:
- **Initial Project Cost:** $32,337,910
- **Final Project Cost:** $32,337,910
- **Reason for Difference:** Owner initiated changes

Initial and Final Project Cost Difference: $0

Project Information:
- **Start Date:** 12/2010
- **Actual Completion:** 12/2010

Project Name and Location:
- **Northeast Stoney Trail**
- **Calgary West LRT**
- **Syncrude Canada Ltd.**
- **SR 532 Design-Build Corridor Improvements**

Project Description:
- **Northeast Stoney Trail**
- **Calgary West LRT**
- **Syncrude Canada Ltd.**
- **SR 532 Design-Build Corridor Improvements**

Initial and Final Project Cost:
- **Northeast Stoney Trail:** $410,000,000
- **Calgary West LRT:** $339,000,000
- **Syncrude Canada Ltd.:** $1,200,000,000
- **SR 532 Design-Build Corridor Improvements:** $50,415,851

Construction Start Date:
- **Northeast Stoney Trail:** 02/2007
- **Calgary West LRT:** 02/2010
- **Syncrude Canada Ltd.:** 06/2010
- **SR 532 Design-Build Corridor Improvements:** 02/2009

Scheduled and Actual Completion Dates:
- **Northeast Stoney Trail:** 10/2009, 12/2009
- **Calgary West LRT:** 11/2012, 10/2012
- **Syncrude Canada Ltd.:** 06/2015, 06/2015
- **SR 532 Design-Build Corridor Improvements:** 12/2010, 12/2010

Role of Major Participants on the Project:
- **Lead Contractor**
- **Managing JV Member**